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Using the lateral Casimir force—a manifestation of the quantum fluctuations of the electromagnetic field
between objects with corrugated surfaces—as the main force transduction mechanism, a nanomechanical
device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in
the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir
force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute
changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the
proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems.
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I. INTRODUCTION

As the ability to fabricate mechanical components with
fine geometrical structures improves, engineers face new
problems related to wear �1�, stiction, and jamming �2–4� of
the mechanical devices. Whereas these tribological issues are
being tackled using a variety of relatively more conventional
methods �5�, it will be interesting to investigate the possibil-
ity of using physical mechanisms that allow the different
parts of mechanical devices to engage without using direct
contact between them.

It has been suggested recently that due to its strong dis-
tance dependence, the Casimir force �6–8� could become a
significant player at the nanoscale and can be potentially
used for noncontact transduction of mechanical forces within
small devices. In particular, such suggestions have been put
forward for both the normal Casimir force �9,10� and the
lateral Casimir force, which can be realized in systems with
lateral periodic geometrical features such as surface corruga-
tions �11,12� and dielectric heterostructures �13�. Given that
the normal force is relatively more difficult to control due to
its “catastrophic” nature when it sets in �2�, the lateral Ca-
simir force seems to be a more practical option for such
device applications.

Recently, this idea has been used to propose a number of
simple mechanical devices that could work at the nanoscale
and are powered by the lateral Casimir force. These proposed
devices include a rack-and-pinion machine with a gap be-
tween the rack and the pinion and the rack moving at con-
stant speed in one direction �14� or vibrating laterally �15�,
an asymmetric ratchet system with a harmonically modulat-
ing gap separation �16�, and a novel system with two racks
and one pinion �17�. While such designs could help with the
development of alternative solutions for the tribological
problems mentioned above, we are also in need of improving
the theoretical methods that are available for the calculation

of the Casimir force in systems with complex geometries
�18–26�.

Here, we investigate the dynamical behavior of a frus-
trated nanomechanical device made with a pinion sand-
wiched between two racks that are moving in the same di-
rection and coupled via the lateral Casimir force, as shown
schematically in Fig. 1. The device can be controlled using a
number of geometrical parameters such as the gap size and is
only possible due to the noncontact nature of the interaction
between the racks and the pinion. The case of a strongly
damped rack-pinion-rack device, so that the inertia can be
neglected, is studied in Ref. �17�. The strongly damped sys-
tem has five distinct behaviors: �i� the pinion could be locked
with either rack 1 or rack 2, �ii� the pinion could move along
with either rack 1 or rack 2 but with a lower average veloc-
ity, and �iii� the pinion could oscillate back and forth without
choosing to go with either of the racks. The system can dra-
matically react to minute changes in the gap size and rack
velocities and can thus act as a good sensor. The oscillatory
regime could be used to generate a clock signal of tunable
frequency. In this paper, we analyze the system in a regime
where both dissipation and inertia are important. Since the
parameter space of the general case is very large, we only
focus on the fully symmetric device. We find a variety of
different dynamical behaviors including symmetry breaking
�so that the pinion will choose to move with one of the racks
despite perfect symmetry between the two�, fractional aver-
age velocity of the pinion, intermittent behavior of the pinion
around a neutral average position, and pinion velocities that
significantly exceed the rack velocity.

The rest of the paper is organized as follows. Section II
reviews the lateral Casimir force, while Sec. III describes the
general dynamical formulation of the motion of the pinion.
Section IV is devoted to the numerical analysis of the sys-
tem, which is followed by some discussions and concluding
remarks in Sec V.

II. LATERAL CASIMIR FORCE

Consider two plates with harmonic corrugations of iden-
tical wavelength � that are positioned opposite to one an-
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other with a relative lateral displacement of x−y. Due to
their interaction with the quantum fluctuations of the electro-
magnetic vacuum, they experience a lateral Casimir force of
the form �11�

Flateral = − F sin�2�

�
�x − y�� , �1�

where the amplitude F depends on the mean separation of
the plates and the amplitude of the corrugations �12,18,19�.
The amplitude of the lateral Casimir force for two parallel
plates is given as

Fplate =
2��cabA

�H5 J�H/�� , �2�

where a and b are the two amplitudes of the corrugations on
the two surfaces, respectively, H is the mean separation be-
tween the plates, and A is the surface area of the plates.

In Eq. �2�, the “Josephson” coupling function J�x� starts
from the constant value of �2 /120 at small x and decays
exponentially at large x �18�. To get a feel for the strength of
the lateral Casimir force, one can look at the experimentally
measured values for it; for a plate and a sphere of radius
100 �m with �=1.1 �m, H�200–300 nm, a=60 nm, b
=8 nm, the force is in the 0.1 pN range �12�.

III. EQUATION OF MOTION

The system we study consists of two identical corrugated
plates �racks� with corrugation amplitude a that sandwich a
corrugated cylinder �pinion� with corrugation amplitude b,
leaving gaps of size H at either side between the surfaces
�see Fig. 1�. The pinion experiences a lateral Casimir force
from each of the racks; note that the wavelength of the cor-
rugations must be the same on all the three surfaces so that
coherent coupling is possible. The amplitude of the lateral
Casimir force F, called the Casimir grip henceforth, depends
on the geometric characteristics of the device and in particu-

lar the gap size and the amplitudes of corrugations
�12,14,15,18,19�.

The surfaces of the two racks exert opposing lateral Ca-
simir forces on the pinion, which add up to a net torque of
−RF sin�2��x−y1� /��−RF sin�2��x+y2� /�� that needs to
be taken into account in the equation of motion that probes
the dynamics of the pinion. This equation is written using the
principal coordinate x=R�, where � is the angle of rotation
and R is the radius of the pinion. Putting in y1=y2=VRt, the
equation of motion reads

I

R

d2x

dt2 +
�

R

dx

dt
= − RF sin�2��x − VRt�

�
�

− RF sin�2��x + VRt�
�

� , �3�

where I is the moment of inertia of the pinion about its major
axis and � is the rotational friction coefficient �27�. This dy-
namical equation needs to be solved with the initial position
x0 and the initial velocity v0 to determine the possible long-
time behaviors of the device.

We can estimate the moment of inertia of the pinion as
I= 1

2 MR2= �
2 �LR4, assuming it is a uniform cylinder of mass

M, density �, and height L. This ignores the corrugations,
which should be a reasonable approximation for sufficiently
large radii. We can also estimate the rotational friction coef-
ficient � using a model for the friction involved in the setup.
Assuming that the lubrication at the axle �or pivot� on which
the pinion is mounted is the main source of friction in the
system, we can estimate the friction coefficient as �
�2�	Lr3 /h for an axle of radius r that is lubricated with a
fluid layer of thickness h and viscosity 	.

↑
y2

↔H↑x↔H↑
y1

↑VR↑VR

→VP

aa

b

�λ

FIG. 1. �Color online� The schematics of the rack-pinion-rack
device. The racks and the pinion have sinusoidal corrugations of
wavelength � and amplitudes a and b, respectively. The choice of
parallel rack velocities VR �rather than opposite� frustrates the sys-
tem, which is only possible because of the noncontact design. The
pinion velocity VP is taken as positive if it is in the direction shown,
as a convention.
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FIG. 2. �Color online� Phase diagram of the dynamical system.
The following notation is used in the labels of the different phases.
0 means that the average pinion velocity is zero, while 2s, 3s, and
5s denote the number of possible different states �outcomes� in each
region depending on the initial conditions. The subscript “f” de-
notes no oscillations around the terminal value of �mean� velocity,
while the subscript “i” denotes intermittency in the pinion velocity
time series, both for the case when the average velocity is zero. The
sequence of phases are �0f, 3sf, 3s, 2s, 0, 0i� for 
=0.1, �0f, 3s, 5s,
2s, 0i, 0, 0i� for 
=0.2, �0f, 0, 0i, 3si, 2s� for 
=0.5, and �0f, 0, 0i,
2s� for 
=1.0.
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In the dynamics of the rack-pinion-rack device, � / �2��
and T=� / �2�VR� are the natural units of length and time,
respectively. Introducing x̄=2�x /� and �= t /T, the equation
of motion can be written as

d2x̄

d�2 = − 

dx̄

d�
− f sin x̄ cos � , �4�

where the dimensionless dissipation coefficient is defined as


 =
��

2�IVR
�5�

and the dimensionless Casimir grip is defined as

f =
R2F�

�IVR
2 . �6�

We also note that Eq. �4� describes a permanent magnet in a
periodically oscillating magnetic field �28� or an electron in a
standing-wave field �29�. Equation �4� exhibits rich dynami-
cal behaviors such as symmetry-breaking pitchfork bifurca-
tions, period-doubling transitions to chaos, symmetry-
restoring attractor-merging crises, and saddle node

bifurcations giving rise to new periodic attractors �30�.

IV. RESULTS

The nonlinear nature of the dynamics of the system, to-
gether with the presence of the inertial term, leads to a rich
variety of different behaviors. For example, similar to the
device studied in Ref. �15�, the system can exhibit spontane-
ous symmetry breaking. The pinion can be locked onto one
of the racks, i.e., the average pinion velocity VP can be either
+VR or −VR. According to Chirikov �31�, the above system at

=0 exhibits chaotic motion for f �

1
2 . The addition of the

friction term to the dynamical equation will make analytical
study of the dynamical system more cumbersome.

Here, instead of embarking on a full study of this system,
we focus on the average pinion velocity in the long-time
limit and try to identify the different dynamical regimes that
can exist depending on the initial conditions and the value of
the two parameters 
 and f . We have numerically studied Eq.
�4� for 
� �0.1,0.2,0.5,1� and f � �0.1,0.2,0.3, . . . ,2�. In
this range of parameters, the inertia term plays a key role and
is a distinctly different regime as compared to the dissipative
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FIG. 3. �Color online� Various types of signals observed for v�t� for different values of f and 
. �a� corresponds to f =0.1 and 
=0.1,
which belongs to the domain denoted as 0f in Fig. 2, where the pinion velocity vanishes in the long-time limit. �b� and �c� correspond to f =1
and 
=0.1 and represent the cases where the pinion is locked onto one of the racks and the velocity oscillates about +VR or −VR. �d�
corresponds to f =2 and 
=0.1, which belongs to the domain denoted as 0 in Fig. 2, and shows a case where the pinion velocity oscillates
about zero. �e� corresponds to f =2 and 
=0.2, which belongs to the domain denoted as 0i in Fig. 2, and shows a case where the pinion
velocity oscillates in an intermittent manner about zero. �f� and �g� correspond to f =0.6 and 
=0.2, which belongs to the domain denoted
as 5s in Fig. 2, and represent the cases where the pinion average velocity could be −0.33VR or +0.33VR, respectively.
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limit of the same system studied in Ref. �17�. In our numeri-
cal investigations of the behavior of the dynamical system,
we limit ourselves to the initial conditions x̄0� �−2� ,
−34� /19, . . . ,34� /19,2�� and x̄0�� �−3,−51 /19, . . . ,
51 /19,3�. Of course, one may identify other dynamical re-
gimes choosing parameters 
, f , x̄0, and x̄0� not listed here.

The system exhibits a variety of different behaviors that
we probe by calculating the pinion velocity v�t� at long times
and its average value VP. Figure 2 delineates the different
possible types of behavior in the space of the parameters 

and f and Fig. 3 shows a number of sample time series for
the pinion velocity corresponding to these different phases.
For small values of f , the system is driven to a fixed point at
x̄���=n� �depending on the initial conditions�, where n is an
integer. In this phase, which is denoted as 0f in Fig. 2, the
average pinion velocity is zero as can be seen in Fig. 3�a�. In
the regions denoted as 0 in Fig. 2, the pinion velocity oscil-
lates about a vanishing average. In the region labeled as 2s in

Fig. 2, the average pinion velocity VP could be either −VR or
+VR, depending on the initial conditions. Figures 3�b� and
3�c� show sample pinion velocity signals oscillating about
−VR or +VR, while Fig. 4 shows the different regions in the
space of initial conditions that could lead to different final
behaviors. While in phase 0, the pinion velocity oscillates
regularly around a zero average, although instantaneous ve-
locities could be even more than a factor of 2 larger than the
rack velocity as Fig. 3�d� shows, in another region denoted

x0

v0

FIG. 4. �Color online� In many of the regions in the phase dia-
gram of Fig. 2, different initial conditions lead to different average
velocities. x0 is between −� and � �20 points� and v0 is between
−3VR and 3VR �20 points�. Top: f =1.5 and 
=0.1 �2s�, white means
VP=VR, and black means VP=−VR. Middle: f =0.3 and 
=0.1 �3sf�,
red means VP=0, white means VP=VR, and black means VP=−VR.
Bottom: f =0.6 and 
=0.2 �5s�, white means VP=0, black means
VP=VR, gray means VP=−VR, and red means VP=0.33VR if v0

�0 and VP=−0.33VR if v00.
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FIG. 5. �Color online� �a� The intermittent velocity signal for
f =2 and 
=0.2 �within the 0i phase� corresponding to x0

=3� / �2�� and v0=3VR. �b� shows a portion of the time series,
indicating large correlation times. In �c�, the correlation time tc is
calculated for the section of the time series between 0.75�20 000
and 20 000 time steps. In �d�, the histogram of correlation times
N�tc� is plotted vs the correlation time in a log-log scale. The line
that goes through the data has a slope of −2.7 and is a guide to the
eyes.
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as 0i in Fig. 2 the system could exhibit a net vanishing ve-
locity with an intermittent signal that oscillates randomly
between values near −VR and +VR, as shown in Fig. 3�e�.

In a number of regions in Fig. 2, the system evolves to an
average pinion velocity of −VR, 0, or +VR depending on ini-
tial conditions �see Fig. 4�. When the average velocity in
these regions is −VR or +VR, the time series oscillates about
the average value as shown in the example of Figs. 3�b� and
3�c�. When, however, the average velocity is zero in these
regions, the system could exhibit the three behaviors de-
scribed above. These regions are denoted as 3sf when the
average velocity decays to zero with no oscillations, 3s when
the average velocity oscillates regularly about zero, and 3si
when it oscillates intermittently about zero. Finally, a small
region in Fig. 2, denoted as 5s, was found where the system
can evolve to five different states with final average pinion
velocities of −VR, −0.33VR, 0, +0.33VR, and +VR depending
on the initial conditions, as can be seen in Fig. 4. Figures 3�f�
and 3�g� show typical velocity time series whose averages
are −0.33VR and +0.33VR, respectively.

V. DISCUSSION

The combination of inertia and the nonlinear frustrated
coupling in the dynamical system could lead to a wide range
of behaviors, as summarized in the phase diagram of Fig. 2.
There are several remarkable features in the results presented
in Sec. IV. At small values of f , the system is in the phase 0f
for all values of 
. Increasing the value of f then drives the
system into several other phases depending on the value of 
.
These transitions do not always follow our intuitions. For
example, upon increasing f , the system goes into the phases
where several states could coexist, which could be inter-
preted as being cause by the stronger Casimir grip. However,
further increasing f could drive the system out of these
phases into the symmetric phase that oscillates between the
two states. In other words, increasing the strength of the
bond between the racks and the pinion first leads to symme-
try breaking and then into a re-entrant oscillatory double-
bond between the pinion and both racks. This can be
achieved by decreasing the gap size H or the rack velocity
VR to increase the coupling strength f �see Eq. �6��. Another
interesting feature is that unlike the fully dissipative case
where the pinion velocity could at most reach the velocity of
one of the racks, the inertia in the system can cause the value
of the velocity to overshoot significantly, as can be seen in
the example of Fig. 3�d�. The existence of the fractional ve-
locity of �0.33VR is also very interesting in the sense that in
the system effectively oscillates between the two states of
but with unequal weight for each.

Another interesting feature of the dynamical behaviors of
the system is the presence of intermittency in the velocity
time series. Figure 5�a� shows a pinion velocity signal that
consists of batches that oscillate about +VR alternating with
batches that oscillate about −VR, with an overall average of
zero. A zoom into a portion of the signal at long times,
shown in Fig. 5�b�, demonstrates long correlation times. To
probe this behavior in a quantitative way, we have defined a
correlation time tc and measured its statistical properties. The
correlation time is defined as follows. We first quantize the
velocity signal by setting it to +1 if it is positive and to −1 if
it is negative �in units of VR�. Then at each time t, we probe
the signal and extract the time that it takes until the digitized
velocity signal switches over from +1 to −1; we call this
time tc�t�. Figure 5�c� shows the values of these correlation
times as a function of time in an intermittent solution of the
dynamical system. We then use this time series to extract the
distribution function of the correlation times N�tc�, which is
defined as the number of occurrences of a certain value of tc
in a given portion of the time series. This distribution is
plotted in Fig. 5�d� in a log-log scale and as can be seen, it
shows that a full spectrum of correlation times is present in
the dynamics. Moreover, our numerical results suggest that
the long-time tail of the distribution might have an algebraic
decay with an exponent −2.7, although our limited numerical
studies are not sufficient to verify this behavior in a satisfac-
tory way.

In its strongly damped regime, the fully symmetric rack-
pinion-rack device could be used to generate a clock signal
of tunable frequency �17�. We find that the weakly damped
pinion may choose to move with one of the racks. In prac-
tice, the pinion is mounted on an axle and the main source of
friction in the system comes from the lubrication at the axle.
Our analysis shows that one does not face the reduction of
friction as a major obstacle to realize the mechanical clock.

In conclusion, we have studied the dynamical behavior of
a frustrated mechanical device that can be made at small
scale using the lateral Casimir force as the main force trans-
duction mechanism. The combination of inertia, friction,
frustration, and nonlinearity of the dynamical coupling has
led to a rich phase diagram of deterministic and chaotic re-
gimes. This study could help us toward understanding the
potential benefits of such nanomechanical devices in future
directions of mechanical engineering.

ACKNOWLEDGMENTS

R.G. wishes to thank the ESF Research Network CA-
SIMIR for providing excellent opportunities for discussion
on the Casimir effect and related topics. This work was sup-
ported by EPSRC under Grant No. EP/F036167/1.

�1� M. P. de Boer and T. M. Mayer, MRS Bull. 26, 302 �2001�.
�2� E. Buks and M. L. Roukes, Phys. Rev. B 63, 033402 �2001�.
�3� A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R.

Bennewitz, and E. Meyer, Science 313, 207 �2006�.

�4� J. Y. Park, D. F. Ogletree, P. A. Thiel, and M. Salmeron,
Science 313, 186 �2006�.

�5� R. W. Carpick, Science 313, 184 �2006�.
�6� H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 �1948�.

NONLINEAR DYNAMICS OF A RACK-PINION-RACK… PHYSICAL REVIEW E 81, 016104 �2010�

016104-5



�7� M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys.
Rep. 353, 1 �2001�.

�8� M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.
Mostepanenko, Advances in the Casimir Effect �Oxford Uni-
versity Press, Oxford, 2009�.

�9� H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F.
Capasso, Science 291, 1941 �2001�.

�10� H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F.
Capasso, Phys. Rev. Lett. 87, 211801 �2001�.

�11� R. Golestanian and M. Kardar, Phys. Rev. Lett. 78, 3421
�1997�.

�12� F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M.
Mostepanenko, Phys. Rev. Lett. 88, 101801 �2002�; Phys.
Rev. A 66, 032113 �2002�.

�13� A. Azari, H. S. Samanta, and R. Golestanian, New J. Phys. 11,
093023 �2009�.

�14� A. Ashourvan, M. F. Miri, and R. Golestanian, Phys. Rev. Lett.
98, 140801 �2007�.

�15� A. Ashourvan, M. F. Miri, and R. Golestanian, Phys. Rev. E
75, 040103�R� �2007�.

�16� T. Emig, Phys. Rev. Lett. 98, 160801 �2007�.
�17� M. F. Miri and R. Golestanian, Appl. Phys. Lett. 92, 113103

�2008�.
�18� T. Emig, A. Hanke, R. Golestanian, and M. Kardar, Phys. Rev.

A 67, 022114 �2003�.
�19� R. B. Rodrigues, Paulo A. Maia Neto, A. Lambrecht, and S.

Reynaud, Phys. Rev. Lett. 96, 100402 �2006�.
�20� T. Emig, Europhys. Lett. 62, 466 �2003�; R. Büscher and T.

Emig, Phys. Rev. Lett. 94, 133901 �2005�.
�21� R. Golestanian, Phys. Rev. Lett. 95, 230601 �2005�; Phys.

Rev. A 80, 012519 �2009�.
�22� A. Lambrecht and V. N. Marachevsky, Phys. Rev. Lett. 101,

160403 �2008�.
�23� A. Rodriguez, M. Ibanescu, D. Iannuzzi, F. Capasso, J. D.

Joannopoulos, and S. G. Johnson, Phys. Rev. Lett. 99, 080401
�2007�; A. Rodriguez, M. Ibanescu, D. Iannuzzi, J. D. Joan-
nopoulos, and S. G. Johnson, Phys. Rev. A 76, 032106 �2007�;
A. W. Rodriguez, J. D. Joannopoulos, and S. G. Johnson, ibid.
77, 062107 �2008�.

�24� S. Pasquali and A. C. Maggs, J. Chem. Phys. 129, 014703
�2008�; Phys. Rev. A 79, 020102�R� �2009�.

�25� F. C. Lombardo, F. D. Mazzitelli, and P. I. Villar, J. Phys. A
41, 164009 �2008�.

�26� I. Cavero-Peláez, K. A. Milton, P. Parashar, and K. V. Shajesh,
Phys. Rev. D 78, 065018 �2008�; 78, 065019 �2008�.

�27� In Eq. �3�, a constant offset in the argument of the sine func-
tions due to the positioning of the pinion can be eliminated by
a suitable choice of the origin for x and t.

�28� H. Meissner and G. Schmidt, Am. J. Phys. 54, 800 �1986�; K.
Briggs, ibid. 55, 1083 �1987�; F. C. Moon, J. Cusumano, and
P. J. Holmes, Physica D 24, 383 �1987�.

�29� D. F. Escande and F. Doveil, Phys. Lett. A 83, 307 �1981�; J.
Stat. Phys. 26, 257 �1981�; D. F. Escande, Phys. Rep. 121,
165 �1985�.

�30� S.-Y. Kim, J. Phys. A 32, 6727 �1999�.
�31� B. V. Chirikov, Phys. Rep. 52, 263 �1979�.

MIRI, NEKOUIE, AND GOLESTANIAN PHYSICAL REVIEW E 81, 016104 �2010�

016104-6


